
ECE 604, Lecture 7

September 18, 2018

1 Introduction

In this lecture, we will cover the following topics:

• Scalar Magnetic Potential Φm

• Boundary Conditions

• Magnetic Energy Density

• Energy Stored in an Inductor

Additional Reading:

• Sections 2.5, 2.13–2.17, Ramo et al.

Printed on September 25, 2018 at 15 : 55: W.C. Chew and D. Jiao.
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2 Scalar Magnetic Potential Φm

In a source-free region, Ampere’s law becomes

∇×H = 0 (2.1)

Hence, we can also use the identity that ∇×∇Φm = 0 to suggest that

H = −∇Φm (2.2)

where Φm is analogous to the electric scalar potential. There we have let
E = −∇Φ so that ∇ × E = 0. Thus Φm here is called the magnetic scalar
potential.

From Gauss’s law for the magnetic field such that

∇ ·B = 0 (2.3)

and that B = µH from the constitutive relation, then we arrive at the general-
ized Laplace’s equation

∇ · µ∇Φm = 0 (2.4)

For a homogenous medium where µ is independent of position, then ∇·µ∇Φm =
µ∇ · ∇Φm = µ∇2Φm. Thus,

∇2Φm = 0 (2.5)

which is the simple Laplace’s equation

Ampere’s law when a current source J is present is given by

∇×H = J (2.6)

Next, we investigate the kind of boundary condition induced by such an equa-
tion.
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3 Boundary Condition for H

To derive the boundary condition induced by the partial differential equation
(2.6), we can use the conventional method described by most textbooks by
integrating (2.6) over a small loop straddling the interface between two media
µ1 and µ2. This is illustrated by Prof. Dan Jiao’s lecture notes.

Alternatively, we can use the unconventional methods by projecting the
partial differential equation onto a local orthogonal coordinate system at the
interface as shown in Figure 1

Figure 1: My student helper has not drawn the local coordinates to be that
orthogonal.

To be general, we also include the presence of a current sheet at the interface.
Rewriting (2.6) in a local coordinate system, assuming that J = x̂Jsxδ(z), then

∇×H = x̂

(
∂

∂y
Hz −

∂

∂z
Hy

)
= x̂Jsxδ(z) (3.1)

From the above, a current sheet, or a surface current density becomes a delta
function singularity when expressed as a volume current density; hence, we have
the form of the right-hand side of the above equation. From the above, the only
term that can produce a δ(z) singularity on the left-hand side is the − ∂

∂zHy

term. Therefore, we conclude that

− ∂

∂z
Hy = Jsxδ(z) (3.2)
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In other words, Hy has to have a jump discontinuity at the interface where
the current sheet resides. Or that

Hy(z = 0+)−Hy(z = 0−) = −Jsx (3.3)

The above implies that

H2y −H1y = −Jsx (3.4)

But Hy is just the tangential component of the H field. Now if we repeat the
same exercise with J = ŷJsyδ(z), at the interface, we have

H2x −H1x = Jsy (3.5)

Now, (3.4) and (3.5) can be rewritten using a cross product as

ẑ × (ŷH2y − ŷH1y) = x̂Jsx (3.6)

ẑ × (x̂H2x − x̂H1x) = ŷJsy (3.7)

The above two equations can be combined as one to give

ẑ × (H2 −H1) = Js (3.8)

Taking ẑ = n̂ in general, we have

n̂× (H2 −H1) = Js (3.9)
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4 Boundary Condition for B

The B field satisfies the partial differential equation given by (2.3). It induces
a different boundary condition for B.

Figure 2: Not quite orthogonal

Again, writing Gauss’s law using a local coordinates shown in Figure 2, we
have

∂

∂x
Bx +

∂

∂y
By +

∂

∂z
Bz = 0 (4.1)

Since there are no medium discontinuities in the x and y directions, there cannot
be jump discontinuity for Bx and By. The only possibility for discontinuity is
on Bz since it goes through a medium interface. Focussing on Bz alone, the
normal component, it implies that

∂

∂z
Bz = finite (4.2)

since there cannot be infinities coming from the other terms in the above equa-
tion. Integrating the above across the interface, over an infinitesimal length, we
have

Bz(z = 0+)−Bz(z = 0−) = 0 (4.3)

or that

n̂ · (B2 −B1) = 0 (4.4)
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5 Perfect Conductor and Conductor

We have seen that for a finite conductor, as long as σ 6= 0, the charges will
re-orient themselves until the electric field is expelled from the conductor; oth-
erwise, the current will keep flowing. But there are no magnetic charges nor
magnetic conductors in this world. So this physical phenomenon does not hap-
pen for magnetic field: in other words, magnetic field cannot be expelled from
an electric conductor. However, a magnetic field is expelled from a perfect
conductor or a superconductor. You can only fully understand this physical
phenomenon if we study Maxwell’s equations in their full glory or in their time-
varying form.

In a perfect conductor where σ → ∞, it is unstable for the magnetic field
B to be nonzero. As time varying magnetic field gives rise to an electric field
by the time-varying form of Faraday’s law, a small time variation of the B field
will give rise to infinite current flow in a perfect conductor. Therefore to avoid
this ludicrous situation, and to be stable, B = 0 in a perfect conductor or a
superconductor.

So if medium 1 is a perfect electric conductor, then B1 = H1 = 0. The
boundary conditions (3.9) and (4.4) become

n̂×H2 = Js (5.1)

n̂ ·B2 = 0 (5.2)

The B field is expelled from the perfect conductor, and there is no normal
component of the B field as there cannot be magnetic charges, as shown in
Figure 3.

Figure 3:
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6 Boundary Conditions for Φm

As mentioned before, from Gauss’ law that ∇ ·B = 0, and Ampere’s law for a
source-free region that ∇×H = 0, we conclude that

H = −∇Φm (6.1)

∇ · µ∇Φm = 0 (6.2)

Here, (6.2) is the generalized Laplace’s equation. From it, we can deduce
the boundary condition that

n̂ · µ1∇Φm = n̂ · µ2∇Φm2 (6.3)

across an interface. The above is similar to

µ1
∂

∂n
Φm1 = µ2

∂

∂n
Φm2 (6.4)

where n̂ · ∇ = ∂
∂n is the normal derivative. Also, since ∇Φm cannot be infinite,

because ∇ · µ∇Φm = 0, Φm must be a continuous function. Consequently, we
have

Φm1 = Φm2 (6.5)

at a medium interface.
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7 Magnetic Energy Density

Unlike the electric energy stored where we can do a Gedanken experiment of
moving an electric charge against an electric field as work done and use that to
determine the energy stored in the electric field, no such Gedanken experiment
exists for magnetic field. At this point, we have to derive the magnetic energy
stored by analogy. Since the energy stored in the electric field is given by

UE =
1

2

ˆ
V

E ·DdV (7.1)

by the same token, the energy stored in the magnetic field is

UH =
1

2

ˆ
V

H ·BdV (7.2)

Only when we study Maxwell’s equation in its full form can we prove the physical
meaning of the above.

For an isotropic medium when B = µH, then the above becomes

UH =
1

2

ˆ
V

µH ·HdV =
1

2

ˆ
V

µ|H2|dV (7.3)

The above is consistent with the energy stored in an inductor which is

WH =
1

2
LI2 (7.4)

8 Energy Stored in an Inductor

The energy stored in an inductor can be derived by considering the instanta-
neous power in an inductor which is given by

p = vi = Li
di

dt
(8.1)

where we have used the fact that across an inductor, v = L di
dt . Integrating the

above, we get

WH =

ˆ t

0

pdt =

ˆ I

0

Li′di′ =
1

2
LI2 (8.2)

Notice that (8.2) is proved by considering a time-varying system. Hence, (7.2)
and (7.3) can be properly proved by considering a time-varying system, which
will be described by the full form of Maxwell’s equations.
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